资料图:麦卡锡。 中新社记者 沙晗汀 摄
“谈判让麦卡锡显得软弱”
继10轮投票后,众议院依然无人赢得当选议长所需的简单多数,即至少218票。共和党在新一届众议院占222席,其中200人在把票投给麦卡锡、21人投给共和党众议员唐纳兹,一人投“缺席票”;民主党人的212票则一致投给了众议院民主党领袖杰弗里斯。
据《纽约时报》援引三名知情人士报道称,在过去两天连续六轮投票未能胜出后,麦卡锡私下里同意了反对派提出的更多要求,包括允许一名议员在任何时候强制进行快速投票,把他从议长位置上“赶下来”,这将极大削弱议长权力。
一名知情人士透露,麦卡锡还承诺允许右翼派系在强大的规则委员会中挑选该党三分之一的成员。此外,他还承诺将开支法案开放给自由辩论,任何议员都可以在辩论中提出修改,包括那些旨在破坏或否决法案的修改。
“事实上,(麦卡锡)正在与共和党人谈判,这让他看起来非常、非常软弱,以至于到了绝望的地步。”一位共和党游说者说道。
另据英国广播公司(BBC)报道,共和党人虽然在11月以微弱优势赢得了众议院的控制权,但共和党内部的裂痕由来已久,一群强硬的保守派联合起来反对麦卡锡的提名。
“麦卡锡有一段时间没有与核心小组的部分成员交朋友,他树敌很多,”另一位匿名的共和党游说者称。“出于政治原因或个人原因,有些人不喜欢他。”
麦卡锡该何去何从?
华盛顿的政治观察家已经开始就众议长选举该如何结束提出各种假设。他们预测可能的结果有:麦卡锡坚持并获胜,但做出了各种重大妥协,到完全可能退出选举,转而支持其副手路易斯安那州众议员史蒂夫·斯卡利斯。甚至有一个不太可能的结果是,5名共和党人决定投票给民主党人杰弗里斯,并让他控制众议院。
芝加哥大学研究党派关系的政治学家露丝·布洛赫·鲁宾 (Ruth Bloch Rubin) 称,就目前而言,麦卡锡“基本上是党内一方的人质”。
麦卡锡已承诺不再做出任何让步,但可能也别无选择。他可以尝试通过出色地完成委员会的任务或担任新的领导角色来赢得顽固派共和党众议员的支持。
“他必须给那些反对他的人一些东西来挂在帽子上,”曾为前国会议员游说者的亚伦·卡特勒说道。然而,另一位共和党游说者认为“根本没有通往胜利的道路”。
新加坡《联合早报》称,共和党人在民主党人帮助下选出“折中人选”的可能似乎越来越大。进步派民主党众议员卡纳表明,可能支持一名温和派的共和党人成为议长,前提是对方同意与民主党共享传票权,并避免在政府资金和债务上限问题上采取边缘政策。
英国《独立报》称,这并不是麦卡锡第一次角逐众议院议长一职,2015年时任众议院议长约翰·博纳辞职后,麦卡锡曾参加竞选,但随后宣布退出并导致投票被推迟。
众议院议长选举为何如此重要?
在美国政坛,众议院议长是“三号人物”,地位仅次于总统和副总统。众议长是众议院的政治领袖,掌管着众议院议事日程。众议院掌握弹劾权和政府的“钱袋子”。
据BBC介绍,众议院议长是美国政治中最重要的角色之一,控制着众议院的立法议程和时间表,以及各委员会的席位。
分析称,旷日持久的众议长选举可能会破坏众议院共和党人在优先事项上迅速取得进展的希望,其中包括调查拜登政府和其家人,以及关于美国经济、能源独立和边境安全的立法等。
共和党内最激烈的反对来自右翼。《纽约时报》分析称,即便麦卡锡争取到了足够票数,他作为议长显然也会受到右翼的裹挟,因为他在拉票过程中不得不给他们一些承诺。但另一方面,一些共和党内反对派则表示,不相信麦卡锡在最后时刻给他们的承诺。
第11轮众议长投票选举正在进行,尚不清楚僵局是否会打破。
人工智能应用于更多领域 计算机研究深入光电结合******
英国科学家在人工智能(AI)领域取得多项突破,包括用AI首次控制核聚变、用AI预测蛋白质结构等。“深度思维”与瑞士洛桑联邦理工学院合作,训练了一种深度强化学习算法来控制核聚变反应堆内过热的等离子体并宣告成功,有助加速无限清洁能源的到来。“深度思维”凭借“阿尔法折叠”算法,预测了迄今被编目的几乎所有2亿多个蛋白质的结构,破解了生物学领域最重大的难题之一,有助于应对抗生素耐药性,加速药物开发并彻底改变基础科学。该公司研发的“DeepNash”(深度纳什)学会了在“西洋陆军棋”游戏中,使用虚张声势等欺骗手段来击败人类对手。该公司AI创建的高效数学算法能解决矩阵乘法问题。该公司AI通过模拟数十年足球比赛的情况,学会了熟练地控制数字代理足球运动员,其建模的“AI代理”可与其他人工代理沟通合作,在玩游戏时共同制定计划。
牛津大学研究显示,AI能模拟条件反射进行联想学习,比传统机器学习算法快千倍。利兹大学科学家借助AI扫描视网膜以探知心脏病风险。
在计算机相关领域,牛津大学研究人员开发了一种使用光偏振来实现最大化信息存储密度的设备,其计算密度比传统电子芯片提高了几个数量级。南安普顿大学工程师则与美国科学家携手,设计了一种与光子芯片集成的电子芯片并创造出一种设备,能以超高速传输信息同时产生最少的热量。
在机器人领域,利兹大学团队开发了一种“磁性触手机器人”,直径只有2毫米,可由患者体外的磁铁引导进入肺部狭窄的管道采样。帝国理工学院科学家展示了一组受动物启发的飞行机器人,可在飞行中建造3D打印结构,未来有望用于在偏远地区建造房屋或重要基础设施。格拉斯哥大学科学家将由砷化镓制成的微型半导体打印到柔性塑料表面,所得设备的性能可与目前市场上最好的传统光电探测器媲美,且能承受数百次弯曲,可用作未来机器人的智能电子皮肤。苏格兰科学家开发出了一种先进的压力传感器技术,有助于改进机器人系统,如用于机器人假肢和机械臂。(科技日报记者 刘霞)
(文图:赵筱尘 巫邓炎)