提速近10倍!基于深度学习的全基因组选择新方法来了******
近日,中国农业科学院作物科学研究所、三亚南繁研究院大数据智能设计育种创新团队联合多家单位提出利用植物海量多组学数据进行全基因组预测的深度学习方法, 可以实现育种大数据的高效整合与利用,将助力深度学习在全基因组选择中的应用,为智能设计育种及平台构建提供有效工具。相关研究成果发表在《分子植物(Molecular Plant)》上。
全基因组选择作为新一代育种技术,通过构建预测模型,根据基因组估计育种值进行早期个体的预测和选择,从而缩短育种世代间隔,加快育种进程,节约成本,推动现代育种向精准化和高效化方向发展。
统计模型作为全基因组选择的核心,极大地影响了全基因组预测的准确度和效率。传统预测方法基于线性回归模型,难以捕捉基因型和表型间的复杂关系。
相较于传统模型,非线性模型(如深度网络神经)具备分析复杂非加性效应的能力,人工智能和深度学习算法为解决大数据分析和高性能并行运算等难题提供了新的契机,深度学习算法的优化将会提高全基因组选择的预测能力。
该研究团队以玉米、小麦和番茄3种作物的4种不同维度的群体数据为测试材料,通过创新深度学习算法框架开发了全基因组选择新方法。
与其他五种主流预测方法相比,该方法有以下优点: 可以利用多组学数据开展全基因组预测;算法设计中包含批归一化层、回调函数和校正线性激活函数等结构,可以有效降低模型错误率,提高运行速度;预测精度稳健,在小型数据集上的表现与目前主流预测模型相当,在大规模数据集上预测优势更加明显;计算时间与传统方法相近,比已有深度学习方法提速近10倍;超参数调整对用户更加友好。
该研究得到了国家重点研发计划、国家自然科学基金、海南崖州湾种子实验室和中国农业科学院科技创新工程等项目的支持。
学术支持
中国农业科学院作物科学研究所
记者
宋雅娟
砺兵高原,锻造胜战铁拳******
喀喇昆仑,冰封雪裹。
侦察无人机悄然升空,盘旋、突防,数据信息快速回传;某型装备辗转腾挪,出其不意打击“敌”目标……新年伊始,记者走进新疆军区某合成团采访,一场合成营体系攻防演练正在进行。
指挥方舱内,合成一营营长朱生鑫冷静分析战场态势,指挥地面分队展开协同突击。记者在现场看到,多支力量和无人装备在合成营体系内要素合成、联动释能,指挥和作战场面令人耳目一新。
“党的二十大报告指出,‘增加新域新质作战力量比重,加快无人智能作战力量发展’。这是抢占未来战争制高点、提高部队新质战斗力的客观要求。”该团领导说,从空地协同到信息联动,从兵种内配合到跨军兵种联合,他们探索新质战斗力生成规律,锤炼合成营整体作战能力。
由步兵团转型为合成团后,该团从平原地区奔赴雪域高原。第一次合成营战术演练中,火力打击分队精度不如以前,步兵分队冲击速度出现下降,兵种要素之间协同也不够顺畅,影响了作战效能。如何在高原高寒条件下更好发挥合成营作战效能,成为该团党委亟需破解的难题。
编制体制重塑,战法训法升级。砺兵高原,该团拓展多型主战装备作战效能;分兵种强化、按编组合成,模块组合成为协同作战的考评重心……该团推动合成营编制内多兵种攥指成拳,多力量联合运用不断取得新进步。
“提升高原高寒条件下合成营作战能力,兵种协同只是一小步。”该团领导告诉记者,他们更新作战理念,积极探索体系练兵新路。
翻开合成一营的作战问题研讨记录本,记者看到,体系作战研究、无人装备作战战术……作战前沿知识成为官兵学习研讨的重点。朱生鑫说,他们结合专业领域和岗位实践,定期开展联合作战指挥问题研讨,组织合成营指挥机构精研兵力布势、体系攻防等课题。
指挥控制终端前,合成一营首席参谋刘彪敲击键盘,“敌”空中目标信息显示在屏幕上。他告诉记者,演练前,他们和空军某雷达分队建立信息共享机制,屏幕上显示的正是雷达分队实时共享的信息。侦察席位上,无人机机长陆志豪一边操纵无人机展开侦察,一边将相关信息汇总上传分享。
“不断超越自我,才能锻造胜战铁拳。”该团领导说,锚定如期实现建军一百年奋斗目标,他们练兵备战的脚步一刻不停歇,采集了一大批高原作战训练数据,缩短了新装备战斗力生成周期。
傍晚时分,侦察连连长张扬带领分队利用无人机侦察确定“敌”火炮阵地坐标后,直升机升空出击,火炮阵地被精准“摧毁”。
寒风凛冽,高原天寒。一幕幕火热练兵场景让记者感受到高原官兵高涨的练兵备战热情,他们用冲锋的身影诠释着铮铮誓言:边关有我,请祖国和人民放心!(本报记者 李 蕾 特约记者 冯 毅 通讯员 纵 恒 解放军报)
(文图:赵筱尘 巫邓炎)